Early Development of Immuno-oncology Drugs – Novel Targets, Technology Platforms, and Trial Designs

The 4th International Conference on Phase 1 and Early Phase Clinical Trials

Archie Tse MD PhD Oncology Early Development March 2 2018

- Full-time employee of Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, N.J., U.S.A
- Own company stock

PD-1 and PD-L1/L2 Pathway

- PD-1 is an immune checkpoint receptor
- Binding of PD-1 by its ligands PD-L1 or PD-L2 leads to downregulation of T-cell function
- This mechanism is
 usurped by many tumors
- PD-1 blockade through mAb therapy can restore and reveal effective anti-tumor immunity

Topalian et al. *N Engl J Med*. 2012. Garon et al. *N Engl J Med*. 2015. Robert et al. *Lancet*. 2014.

Pembrolizumab is a Humanized IgG4, High-Affinity Anti-PD-1 Blocking Antibody

- •No cytotoxic (ADCC/CDC) activity
- •Pharmacokinetics supportive of dosing every 2 weeks (Q2W) or every 3 weeks (Q3W)
- •Low occurrence of anti-drug antibodies and no impact on pharmacokinetics

Anti-PD1 has become a Cornerstone of Cancer Treatment – KEYTRUDA monotherapy is active in multiple tumor types

Tumor types with approved indication(s)

1. Daud A et al. ASCO 2015; 2. Garon EB et al. ESMO 2014; 3. Seiwert T et al. ASCO 2015; 4. Plimack E et al. ASCO 2015; 5. Nanda R et al. SABCS 2014; 6. Bang YJ et al. ASCO 2015; 7. Moskowitz C et al. ASH 2014; 8. Zinzani PL et al. ASH 2015; 9. Alley EA et al. AACR 2015; 10. Varga A et al. ASCO 2015; 11. Ott PA et al. 2015 ASCO; 12. Doi T et al. ASCO 2015; 13. Hsu C et al. ECC 2015; 14. Ott PA et al. ECC 2015; 15. Bang Y-J et al. ECC 2015; 16. O'Neil B et al. ECC 2015; 17. Rugo HS et al. SABCS 2015;

anel JS et al. ASCO 2016; 19. Mehnert JM et al. ASCO 2016; 20. Cohen R et al. ASCO 2016.

Public

Key Research Questions for Next Steps

Public Oncology

MSD Early Immuno-Oncology Pipeline

Mechanisms and Strategies Driving Cancer Immunotherapy

In Situ Vaccination via STING (Stimulator of Interferon Genes)

Rationale For A STING Agonist In Tumor Immunotherapy

- cGAS/STING pathway is the central innate immune sensor that responds to viral or self dsDNA and bacterial cyclic dinucleotides (CDNs) in the cytosol
- STING activation leads to type-I interferons & proinflammatory cytokine (IFN-β, IL-6, TNF-α) release
- IFN-β induced upon intra-tumoral (IT) injections of STING agonists leads to activation of cross-presenting CD8a⁺, CD103⁺ dendritic cells (DCs)
- CD8⁺ T cell cross-priming propagates antigen-specific T cell proliferation and recruitment of T cells into the tumor
- Efficacy in non-injected lesions is obtained in an abscopal

manner

Public Oncology

http://clincancerres.aacrjournals.org/content/early/201 5/09/15/1078-0432.CCR-15-1362.full.pdf+html

MK-1454 Efficacy In Mouse Tumor Models Resistant To Anti-PD-1 Treatment ('B16F10 Model')

- MK-1454 intratumoral treatment, as a single agent, induced robust anti-tumor immunity and complete responses in multiple syngeneic mouse models (MC38, CT26, B16F10)
- Efficacy observed in bilateral tumor models (CT26 and MC38) but questionable if efficacy is due to true abscopal effect vs. drug exposure in non-injected tumors

 Improved anti-tumor efficacy in the B16F10 model is achieved when combining anti-PD-1 with a sub-efficacious, intratumoral dose of MK-1454

A Public Oncology Cemerski et al. SITC 2017

MK-1454 Efficacy In Mouse Tumor Models Resistant To Anti-PD-1 Treatment ('Large MC38 Model')

- MC38 mouse syngeneic tumor model: Benchmark tumor model that fully responds to anti-PD-1 therapy (9-10/10 CRs) if treatment starts when tumors are ~100 mm³
- If treatment is delayed to when tumors are > 350 mm³, anti-PD-1 is only partially efficacious (rare CRs)

- PD-1 blockade does not induce complete tumor regression in mice with advanced syngeneic tumors
- MK-1454 induces complete tumor eradication of the advanced MC38 mouse syngeneic tumor
- STING agonism in combo with PD-1 blockade provides a 20-fold increase in anti-tumor responses

Cemerski et al. SITC 2017

Public Oncology

MK-1454 Treatment Induces Long-Lasting Anti-tumor Immune Memory

• 'Re-challenge' studies were performed to asses the ability of **MK-1454**, alone or in combination with anti-PD-1, to induce durable anti-tumor responses

 Re-challenge protection is observed in mice that developed complete responses upon either MK-1454 single agent treatment or MK-1454 combo with anti-PD-1

Cemerski et al. SITC 2017

Phase 1 Open Label, Multicenter Study of MK-1454 Administered by Intratumoral Injection as Monotherapy and in Combination with Pembrolizumab for Patients with Advanced/Metastatic Solid Tumors or Lymphomas

- At least one measurable lesion which is amenable to injection via visual inspection for a cutaneous lesion or via ultrasound guidance for a subcutaneous lesion
- Has ≥1 injectable lesion which is amenable to injection and biopsy and is measurable
- Has ≥1 distant, discrete non-injected lesion which is amenable to biopsy and is measurable

Personalized Cancer Vaccine (mRNA-4157/V-940)

Personalized Cancer Vaccines: Biology Background and Early Clinical Success

- Whole Exome Sequencing (WES) has allowed for the identification of neoantigens/tumor specific antigens (TSA) which are mutated proteins expressed due to somatic mutations, posttranslational modifications, or oncogenic viral proteins.
- Tumor infiltrating lymphocytes (TIL) expanded ex vivo contain neoepitope-reactive CD8+ and CD4+ T-cells Rosenberg SA et al. Nat Med 2013; Wick DA Clin Can Res 2014; C Wu et al. Blood 2014; Schumacher TN Nat Med 2014; Rosenberg SA et al. Science 2014; Cohen et al, 2015; Friedman KM et al J. Immunol. 2012; Quezada SA et al. J. Exp. Med. 2010; Dudley ME, et al. Clin. Cancer Res 2010.
- High neoepitope burden is associated with response to PD-1 checkpoint blockade Rizvi et al. Science, 2015
- mRNA and peptide-based PCVs encoding multiple neoantigens (10-20) have been tested in the clinic and appear to be safe and well-tolerated Sahin et al, Nature, 2017, Ott et al, Nature 2017
- PCVs have been demonstrated to generate T cell responses against ~60% of neoantigens encoded in their vaccines and the responses discriminated between the mutant and the wild-type (self) sequences Sahin et al, Nature, 2017, Ott et al, Nature 2017
- PCVs have demonstrated early signs of clinical activity in melanoma Sahin et al, Nature, 2017, Ott et al, Nature 2017

Mechanism of Action of an mRNA-Based PCV

Moderna's Personalized Cancer Vaccine Work Flow

Ablynx Multi-specific Nanobody Platform

Ablynx - Nanobodies as Building blocks for Multi-specific Immuno

Nanobodies -- Derived from heavy-chain only antibodies

Camelid heavy-chain only antibodies are stable and fully functional

Nanobodies represent the next generation of antibody-derived biologics

Trial Design

21

I/O Early Development Challenges – Some Examples

- Ph2 are routinely skipped nowadays
- Dose-finding vs speedy signal-finding in early development
- Platform Design
 - Basket

Public

• Umbrella

Keynote 001 – Adaptive FIH Approach

Public

KEYTRUDA-Based Combinations Show Potential for Enhanced Activity In Many Tumor Types

Public

Two Birds, One Stone

A 2-in-1 adaptive phase 2/3 design for expedited oncology drug development $\stackrel{\star}{\Rightarrow}$

Cong Chen^a,*, Keaven Anderson^a, Devan V. Mehrotra^a, Eric H. Rubin^b, Archie Tse^b Contemporary Clinical Trials 2017

Two Phase 2/3 Design Strategies

Phase 1**Phase 2 PoC**Phase 3

A General "2-in-1" Design

Public

The three endpoints that the standardized test statistics are based upon can be different from each other No penalty needs to be paid for multiplicity control as long as the correlations for the 3 test statistics satisfy $\rho_{XY} \ge \rho_{XZ}$ • i.e., w=1.96 to keep overall Type I error at 0.025 (1-sided)

Chen C, Anderson K, Mehrotra DV, Tse A, and Rubin EH. A 2-in-1 adaptive Phase 2/3 design for expedited drug development. Under review for publication.

THANK YOU!

